KHMELNYTSKYI NATIONAL UNIV

2025.

WORKING PROGRAMME OF THE EDUC‘AT‘T@NAL /COMPONENT
Object-oriented programming

Field of Study: F — Information Technology

Specialty: F2 — Software Engineering

Level of Higher Education: First (Bachelor’s) Level

Educational and Professional Programme: Software Engineering

Course Load: 21 ECTS credits Course Code: CPT.04

Language of Instruction: English

Status of the Educational Component: Compulsory (Professional Training)
Faculty: Faculty of Information Technology

Department: Department of Software Engineering

Number of h Semester
umber of hours
Total control form
Credits
Contact Hours E
w
M
s |g |23«
> 7] A 15} -
k] 2 8 E%] @ 2 x| 2
E;) -8 b Q) L > e o -
h 5| 5 @ S = = oS el & | =
St Q o 5 - [= o =
=} 7 < Q = o £ 2 Q &
glegl 8lE |8 | = E 8u |8 £ &=l 2| E| % £
S/ 8§ 6lc |2 |8 |8 |SE|E |5 |22 8|88 |&
AR n 2| A & 880 |0 & &
Dl 1 | 2 4 120 50 16 34 70 &+
D|2|1 210 82 32 50 128 +

The working programme is based on the Educational and Professional Programme “Software
Engineering” within the specialty F2 “Software Engineering”.

Y e
Program’s author . DSc, Prof. V.V. Martynyuk

Approved at the meeting of the Department of Software Engineering
Minutes No. 1 dated August 28, 2025

Head of the Department P. Bedratyuk

The working programme was reviewed” and approved by the Academic Counci
of the Faculty of Information Technology

Va

Khmelnytskyi 2025

Chair of the Academic Council Tetiana HOVORUSHCHENKO

LETTER OF APPROVAL

ﬁ First Name,
Position Department Name Signature
LAST NAME
Head of Department | Software %" Leonid BEDRATIUK
DSc, Prof. Engineering
Programme Software)
Guarantor Engineering ﬁg—" Leonid BEDRATIUK

DSc, Prof.

OBJECT-ORIENTED PROGRAMMING

Type of Educational Component Compulsory

Level of Higher Education First (Bachelor’s) Level
Language of Instruction English

Semester Second, Third

Number of ECTS Credits Assigned 11

Forms of Study the Course is Designed For Full-time

Learning Outcomes. Upon successful completion of the course, the student should be able to:
understand the general structure of a C# program and apply syntax rules, namespaces, and
assemblies correctly; work with files and streams, performing text and binary input/output
operations using standard C# libraries; design and implement classes, define class members (fields,
methods, properties), and apply encapsulation principles; apply inheritance and polymorphism to
extend and reuse code, override methods, and implement abstract and virtual members; use
delegates, anonymous methods, and lambda expressions to encapsulate behavior and implement
functional-style programming in C#; create and manage events and event handlers, applying the
publish-subscribe pattern for communication between objects; define and implement interfaces to
enforce contracts and support multiple inheritance of behavior; use indexers to provide array-like
access to objects and collections; apply generic templates to create type-safe and reusable data
structures and methods; implement iterators with yield for efficient traversal of collections; work
with LINQ (Language Integrated Query) to query and transform collections and databases,
including advanced LINQ operators; understand the basics of Entity Framework Core, create
models, and perform CRUD operations through object-relational mapping (ORM); translate SQL
queries into Entity Framework syntax and apply LINQ-to-Entities; use navigation properties, and
apply lazy and eager loading to manage relationships between entities effectively; perform complex
joins, tagging, transactions, and debugging in Entity Framework to build reliable database
applications; model software systems using use-case and behavioral modeling, applying UML and
diagrams to design object-oriented solutions; manage dependencies and ensure modularity,
applying principles of clean architecture and design patterns; develop multi-threaded and
asynchronous programs, ensuring thread safety and responsiveness using async/await patterns;
implement graphical user interfaces, integrating event-driven programming concepts; debug, test,
and document programs according to good OOP practices, and use IDE tools such as Visual Studio
for compilation, debugging, and profiling.

Course Content. General structure of C# programs. Files and streams. Classes, class members, and
encapsulation. Inheritance and polymorphism. Delegates, anonymous methods, and lambda expressions.
Events and event handlers. Interfaces. Indexers. Generics and type-safe templates. Iterators and
collection traversal. LINQ queries and transformations. Entity Framework Core basics and CRUD
operations. SQL translation to Entity Framework and LINQ-to-Entities. Navigation properties, lazy and
eager loading. Complex joins, tagging, transactions, and debugging in EF. Object-oriented approach to
software design. Domain Analysis. Object-Oriented Analysis and Design. Programming paradigms.
Object-Oriented Paradigm. Classes and interfaces. Relationships between objects in OOP.
Encapsulation, polymorphism, and abstraction. The concept of inheritance. Coercion and parametric
polymorphism. Modularity in OOP. Value and reference types. Dependency management. Dependency
management: Implementation and libraries. Multithreading, concurrency. Asynchronous programming.
Event-driven programming in OOP. Graphical user interface development, application deployment.

Planned Learning Activities. The minimum amount of classroom-based learning activities in one ECTS
credit for a course at the first (Bachelor’s) level of higher education in full-time study mode is 10 hours per 1
ECTS credit.

Forms (Methods) of Instruction: Lectures (using problem-based learning and visualization
methods), Laboratory works, Independent work

Assessment Methods: Laboratory work defense, Testing

Form of Final Assessment: Exam

Learning Resources:

1.

2.

10.

11

12.
13.

14.

15.

16.

17.

Joe Mayo. C# Cookbook: Modern Recipes for Professional Developers. O’Reilly Media,
2021.

Jon P. Smith. Entity Framework Core in Action (Second Edition). Manning Publications,
2021.

Brian L. Gorman. Practical Entity Framework Core 6: Database Access for Enterprise
Applications. Apress, 2022.

Mrs. Anuradha A Puntambekar. Object-Oriented Analysis & Design, 2021.

Matthias Noback. Object Design Style Guide: A Set of Practices for Writing Object-
Oriented Code. Manning. Publications, 2020.

Andrew Troelsen, Philip Japikse. Pro C# 10 with .NET 6: Foundational Principles and
Practices in Programming. Apress, 2022.

Ziegler S. Micah. Mastering C# Async Programming: Building Scalable and Responsive
Applications, 2021.

Anthony Williams. Hands-On Concurrency with C++: Practical Guide for High-
Performance Multithreading, 2019.

Mark J. Price. C# 10 and .NET 6 — Modern Cross-Platform Development. Packt Publishing,
2021.

Joseph Albahari, Ben Albahari. C# 12 in a Nutshell: The Definitive Reference. O'Reilly
Media, 2024.

. Paul Deitel, Harvey Deitel, Chuti Prasertsith. C++ 20 for programmers. An Object-natural

Approach, 2022.

Christian Nagel. Professional C# and .NET (2021 Edition). Wiley, 2021.

Jesse Liberty, Rodrigo Juarez, Maddy Montaquila. NET MAUI for C# Developers: Build
Cross-Platform Mobile and Desktop Applications. Packt Publishing, 2023.

University Electronic Library. [Electronic resource]. — Available at:

http://library khmnu.edu.ua/

Institutional Repository of Khmelnytskyi National University. [Electronic resource]. —
Available at: http://elar. khmnu.edu.ua/jspui/?locale=en

Modular Learning Environment. [Electronic resource]. — Available at:
https://msn.khmnu.edu.ua/course/view.php?id=9679

Modular Learning Environment. [Electronic resource]. — Available at:
https://msn.khmnu.edu.ua/course/view.php?id=9344

Lecturers: Doctor of Technical Sciences, Full Professor Martynyuk V.V.; Teaching assistant,
Boiko V. O.

3. EXPLANATORY NOTE

The course "Object-oriented programming" is one of the general training courses and occupies a
leading place in the training of students of the first (Bachelor’s) level of higher education, full-time
mode of study (hereinafter — full-time), who study under the Educational and Professional
Programme "Software Engineering" within the specialty F2 "Software Engineering".

Prerequisites — CPT.03 Programming
Postrequisites — CPT.08 Object-oriented design.

In accordance with the educational programme, the course contributes to the development of:
competences: GC1. Ability for abstract thinking, analysis, and synthesis. PC11. Ability to apply the
principles of object-oriented programming for the design and implementation of software systems.
PC12. Ability to use encapsulation, inheritance, polymorphism, and interfaces to build modular and
reusable software components. PC13. Ability to reasonably choose and master the toolkit for
object-oriented software development, including modern IDEs, libraries, and frameworks. PC14.
Ability for algorithmic and logical thinking, with an emphasis on modeling real-world entities and
relationships in software systems. PC15. Ability to design, debug, test, and document object-
oriented applications according to professional standards and good practices.

programme learning outcomes: PLO1 Analyze and apply object-oriented principles to model,
design, and implement software systems. PLOO7 Understand and use in practice the fundamental
concepts of encapsulation, inheritance, polymorphism, and abstraction in C#. PLO10 Perform
object-oriented analysis of the subject area and design class hierarchies, relationships, and
interaction models. PLO11 Select appropriate object-oriented patterns and techniques for
requirement implementation and system modelling. PLO12 Apply effective OOP-based design
approaches to ensure modularity, extensibility, and maintainability of software. PLO13 Know and
apply methods for developing reusable components, generic templates, and collections in C#.
PLO15 Select and use OOP language features, development tools, and frameworks in a well-
grounded manner to solve tasks related to the creation and maintenance of object-oriented software.
Purpose of the course. To develop in students the competences in object-oriented programming
using the OOP language, including problem analysis, system modelling, and implementation of
modular, reusable, and maintainable software solutions with attention to efficiency, correctness, and
professional programming practices.

Subject of the course. Fundamentals of object-oriented programming in the C# language, including
class design, implementation of object-oriented principles, use of collections and generic structures,
along with software analysis and object-oriented design techniques, and application of modern
development tools and frameworks.

Course objectives. To provide students with knowledge and practical skills in designing,
implementing, and debugging programs in C#, using object-oriented programming techniques,
principles of encapsulation, inheritance, and polymorphism, generic structures and collections,
LINQ, standard frameworks to solve typical software development problems efficiently and
maintainably, and software analysis and object-oriented design techniques.

Learning Outcomes. Upon successful completion of the course, the student should be able to:
understand the general structure of a C# program and apply syntax rules, namespaces, and
assemblies correctly; work with files and streams, performing text and binary input/output
operations using standard C# libraries; design and implement classes, define class members (fields,
methods, properties), and apply encapsulation principles; apply inheritance and polymorphism to
extend and reuse code, override methods, and implement abstract and virtual members; use
delegates, anonymous methods, and lambda expressions to encapsulate behavior and implement
functional-style programming in C#; create and manage events and event handlers, applying the
publish-subscribe pattern for communication between objects; define and implement interfaces to
enforce contracts and support multiple inheritance of behavior; use indexers to provide array-like
access to objects and collections; apply generic templates to create type-safe and reusable data
structures and methods; implement iterators with yield for efficient traversal of collections; work
with LINQ (Language Integrated Query) to query and transform collections and databases,

including advanced LINQ operators; understand the basics of Entity Framework Core, create
models, and perform CRUD operations through object-relational mapping (ORM); translate SQL
queries into Entity Framework syntax and apply LINQ-to-Entities; use navigation properties, and
apply lazy and eager loading to manage relationships between entities effectively; perform complex
joins, tagging, transactions, and debugging in Entity Framework to build reliable database
applications; model software systems using use-case and behavioral modeling, applying UML and
diagrams to design object-oriented solutions; manage dependencies and ensure modularity,
applying principles of clean architecture and design patterns; develop multi-threaded and
asynchronous programs, ensuring thread safety and responsiveness using async/await patterns;
implement graphical user interfaces, integrating event-driven programming concepts; debug, test,
and document programs according to good OOP practices, and use IDE tools such as Visual Studio
for compilation, debugging, and profiling.
4. STRUCTURE OF THE COURSE CREDITS

Semester 2
Number of hours allocated to:
Topic Title Lectures Lab | Independent
work work
Topic 1. General structure of C# program. Files and) 4 9
Streams
Topic 2. Classes. Class members. Encapsulation,
. . 2 4 9
Inheritance and Polymorphism
Topic 3. Delegates. Anonymous methods. Lambda) 4 9
expressions. Events. Event Handlers
Topic 4. Interfaces, Indexers 2 4 9
Topic 5. Generic templates, Iterators 2 4 9
Topic 6. LINQ basics. Advanced LINQ 2 4 9
Topic 7. Entity Framework Core Basics. SQL to Entity) 4 3
Framework
Topic 8. EF: Navigation properties. Lazy and Eager) 6 3
loading. Complex joins. Tagging. Transactions. Debugging
Total 16 34 70
Semester 3
Number of hours allocated to:
Topic Title Lectures Lab | Independent
work work
Topic 1. Object-oriented approach to software design 2 4 8
Topic 2. Domain Analysis 2 2 8
Topic 3. Object-Oriented Analysis and Design 2 4 8
Topic 4. Programming paradigms. Object-Oriented Paradigm 2 2 8
Topic 5. Classes and interfaces 2 4 8
Topic 6. Relationships between objects in OOP 2 2 8
Topic 7. Encapsulation, polymorphism, abstraction 2 4 8
Topic 8. The concept of inheritance. Coercion and 5) g
parametric polymorphism
Topic 9. Modularity in OOP 2 4 8
Topic 10. Value and reference types 2 2 8

Topic 11. Dependency management

Topic 12. Dependency management: Implementation and
libraries

Topic 13. Multithreading, concurrency

Topic 14. Asynchronous programming

Topic 15. Event-driven programming in OOP

[NSRE SN SN SR |)
B I NS S B NS S
O |o0 |00 OO0 |00

Number of hours allocated to:

Topic Title
Lectures Lab Independent
work work
Topic 16. Graphical user interface development,
N 2 4 8
application deployment
Total 32 50 128
5.1. CONTENT OF THE LECTURE COURSE
Semester 2
Lecture . . .
No List of Lecture Topics and Annotations Hours

Topic 1. General structure of C# program. Files and Streams

Overview of the C# programming language. History and characteristics of C#.
Structure of a C# program, namespaces, and assemblies. Basic syntax, keywords,
and identifiers. Variables, constants, and data types in C#. Operators and
expressions. Compilation and execution process in .NET. Introduction to the
Visual Studio integrated development environment. Writing, compiling, and
running simple C# programs. Concept of streams in C#. Input and output classes
1 in the System.IO namespace. File types and file modes. Reading and writing text |2
files using StreamReader and StreamWriter. Working with binary files using
FileStream, BinaryReader, and BinaryWriter. Handling directories and file system
operations. Exception handling in file operations. Practical examples of creating,
opening, reading, writing, and closing files. Introduction to asynchronous file I/O.

Ref: [1,7, 11]

Topic 2. Classes. Class members. Encapsulation. Inheritance and Polymorphism

Lecture
No.

List of Lecture Topics and Annotations

Hours

Concept of classes in C#. Defining classes and objects. Class members: fields,
properties, methods, and constructors. Access modifiers and their role in
controlling visibility. Encapsulation as a fundamental principle of object-oriented
programming. Use of properties to implement data hiding and controlled access.
Static members and their usage. Practical examples of designing classes, creating
objects, and applying encapsulation. Concept of inheritance in C#. Base and
derived classes. Access to base class members. Overriding and hiding members.
Concept of polymorphism and dynamic method dispatch. Virtual methods and
overriding rules. Use of the object class and type casting. Interfaces as a form of
multiple inheritance.

Ref.: [1,7, 11]

Topic 3.

Delegates. Anonymous methods. Lambda expressions. Events. Event Handlers

Concept of delegates in C# and their role as type-safe references to methods.
Declaring and instantiating delegates. Multicast delegates and combining method
calls. Introduction to anonymous methods and their syntax. Transition from
anonymous methods to lambda expressions. Syntax and types of lambda
expressions: expression-bodied and statement-bodied forms. Use of delegates and
lambda expressions in event handling and LINQ queries. Practical examples
demonstrating the advantages of functional-style programming with delegates and
lambdas. Concept of events in C# as a mechanism for communication between
objects. Relationship between delegates and events. Declaring and raising events
using the event keyword. Standard event design pattern with EventHandler and
EventArgs. Subscribing to and unsubscribing from events. Event propagation and
multiple subscribers. Practical examples of event handling in user-defined classes
and graphical user interface applications. Introduction to custom event arguments
and best practices for event-driven programming.

Ref: [1,7, 11]

Topic 4.

Interfaces. Indexers

Concept of interfaces in C# as contracts for defining behavior. Declaring and
implementing interfaces. Differences between interfaces and abstract classes.
Multiple interface implementation and resolving naming conflicts. Inheritance
between interfaces. Use of built-in interfaces such as IComparable, [Enumerable,
and IDisposable. Concept of indexers in C# as a mechanism for array-like access
to objects. Declaring and implementing indexers with parameters and return types.
One-dimensional and multi-dimensional indexers. Read-only and write-only
indexers. Overloading indexers and combining with properties. Practical examples
of applying indexers in custom collection classes.

Ref: [1,7, 11]

Lecture
No.

List of Lecture Topics and Annotations

Hours

Topic 5. Generic templates. Iterators

Concept of generics in C# for creating type-safe and reusable code. Declaring
generic classes, methods, and interfaces. Type parameters and constraints (where
keyword). Advantages of generics compared to non-generic collections. Overview
of built-in generic collections in the System.Collections.Generic namespace.
Practical examples of implementing generic methods and classes. Concept of
iterators in C# as a mechanism for sequential access to collections.

Ref.: [1,7, 11]

Topic 6. LINQ basics. Advanced LINQ

Introduction to Language Integrated Query in C#. Concept and advantages of
LINQ as a unified approach to querying data. Syntax of query expressions and
method-based syntax. Basic LINQ operations: filtering, projection, ordering, and
grouping. Using LINQ with collections. Practical examples of applying LINQ
queries to arrays and generic collections. Advanced features of LINQ in C#.
Extension methods and lambda expressions in LINQ queries. Complex operations:
joins, nested queries, groupings, and aggregations. Working with multiple data
sources and query composition. LINQ to Objects, LINQ to XML, and LINQ to
Entities overview.

Ref.: [2, 11]

Topic 7. Entity Framework Core Basics. SQL to Entity Framework

Introduction to object-relational mapping (ORM) and the role of Entity
Framework Core in C#. Overview of EF Core architecture and features. Creating a
data model using classes and properties. Configuring the database context
(DbContext) and defining DbSet properties. Database-first and code-first
approaches. Performing basic CRUD operations: create, read, update, and delete.
Applying migrations to manage database schema changes. Practical examples of
integrating EF Core into C# applications. Mapping SQL queries to Entity
Framework Core. Translation of basic SQL operations (SELECT, INSERT,
UPDATE, DELETE) into LINQ-to-Entities queries. Filtering, sorting, and joining
data using EF Core. Executing raw SQL queries when necessary. Comparison of
SQL syntax and EF Core methods. Advantages and limitations of using LINQ
versus direct SQL. Practical examples of rewriting SQL queries into EF Core
code.

Ref.: [2, 3]

Topic 8. EF: Navigation properties. Lazy and Eager loading. Complex joins. Tagging.

Lecture

No List of Lecture Topics and Annotations Hours

Transactions. Debugging
Concept of navigation properties in Entity Framework Core for representing
relationships between entities. One-to-one, one-to-many, and many-to-many
associations. Configuring relationships with data annotations and Fluent API.

8 Loading related data. Practical examples of working with entity relationships in |,
real applications. Applying query tagging for diagnostics and performance
monitoring. Implementing transactions to ensure data consistency and integrity.

Ref.: [2, 3]
Total||16

Semester 3

Lecture . . .

No List of Lecture Topics and Annotations Hours

Topic 1. Object-oriented approach to software design
Overview of the object-oriented approach to software design. Software design

1 principles. Design process stages.)
Ref.: [4, 5]

Topic 2. Domain Analysis
Phases of software design: domain analysis, object-oriented analysis, object-
oriented design, programming, refactoring, testing, deployment control.

Identifying key entities, relationships, processes. Domain and problem domain.

2 Domain scope. Use-case modeling, use-case diagrams. Features, feature trees, 2
feature model, Feature-oriented domain analysis.
Ref.: [4, 5]

Topic 3. Object-Oriented Analysis and Design
Object-Oriented Analysis and Design: methodology, stakeholder communication,
product quality, visual modeling, iterative and incremental process. History of

3 OOAD. OOA vs OOD differences. Behavioral modeling: sequence, activity, state, |,

collaboration UML diagrams.

Ref: [4, 5]

Topic 4. Programming paradigms. Object-Oriented Paradigm

Lecture
No.

List of Lecture Topics and Annotations

Hours

Software development paradigms: assumptions, concepts, values, practices,
paradigm shift. Object-Oriented Paradigm: history, definitions, key elements, core
concepts, purpose, disadvantages.

Ref.: [4, 5]

Topic 5. Classes and interfaces

Classes and interfaces: backbone of OOP design, support modularity, abstraction,
reusability. Object state, behavior, mutability and immutability. Responsibility,
Class Responsibility Collaboration cards.

Ref.: [1, 4, 5]

Topic 6. Relationships between objects in OOP

Concept of object relationships in object-oriented programming. Types of
associations: dependency, association, aggregation, and composition. Differences
between strong and weak relationships. One-to-one, one-to-many, and many-to-
many associations in class design. Implementing relationships using references,
collections, and properties. Role of constructors and destructors in managing
object lifecycles.

Ref.: [4, 5]

Topic 7. Encapsulation, polymorphism, abstraction

Fundamental principles of object-oriented programming. Concept of
encapsulation and its role in data hiding and controlled access to class members.
Use of properties and access modifiers to implement encapsulation. Concept of
polymorphism as the ability of objects to take different forms. Compile-time
polymorphism through method overloading and operator overloading. Runtime
polymorphism through virtual methods and overriding. Concept of abstraction as
the process of highlighting essential features while hiding implementation details.
Use of abstract classes and interfaces to achieve abstraction.

Ref.: [1,4,5,6,7, 11]

Topic 8. The concept of inheritance. Coercion and parametric polymorphism

Concept of inheritance in object-oriented programming as a mechanism for
reusing and extending code. Concept of coercion (type conversion) in OOP,
including implicit and explicit casting between base and derived types. Safe type
conversions using is, as, and pattern matching. Parametric polymorphism through
generics. Advantages of generics for type safety and reusability.

Lecture
No.

List of Lecture Topics and Annotations

Hours

Ref.: [1,4,5,6,7, 11]

Topic 9. Modularity in OOP

Concept of modularity in object-oriented programming as a principle of dividing
software into independent and reusable components. Role of classes, interfaces,
and namespaces in achieving modular design. Benefits of modularity: readability,
maintainability, scalability, and ease of testing. Use of access modifiers to control
visibility between modules. Importance of modularity. Levels of modularity.
Large-scale modularity. Modularization strategies.

Ref.: [4, 5]

Topic 10.

Value and reference types

10

Concept of value types and reference types. Differences in memory allocation on
the stack and heap. Examples of value types. Examples of reference types.
Behavior of assignment, parameter passing, and comparison for value and
reference types. Use of the “ref” and “out” keywords for passing parameters by
reference. Nullable value types and the role of Nullable<T>. Garbage Collection
and memory management. Dispose pattern. .

Ref.: [1, 6, 11]

Topic 11.

Dependency management

11

Concept of dependencies in object-oriented programming and their impact on
software design. Loose coupling and high cohesion. Techniques for reducing
dependencies between classes and modules. Dependency injection as a design
pattern for managing dependencies. Constructor injection, property injection, and
method injection. Role of interfaces in achieving abstraction and flexibility.

Ref.: [6]

Topic 12.

Dependency management: Implementation and libraries

12

Practical implementation of dependency management. Applying dependency
injection to decouple components and improve testability. Use of built-in NET
Core dependency injection container. Registration of services with different
lifetimes: transient, scoped, and singleton. Constructor-based, property-based, and
method-based injection in practice. Overview of popular dependency injection
libraries. Integration of dependency management into layered and modular
architectures.

Ref.: [6]

Lecture
No.

List of Lecture Topics and Annotations

Hours

Topic 13.

Multithreading and concurrency

13

Concept of multithreading in C# and its role in parallel execution. Creating and
managing threads using the Thread class. Thread states and lifecycle.
Synchronization problems: race conditions, deadlocks, and thread safety.
Mechanisms for synchronization: locks, monitors, mutexes, and semaphores.
Introduction to the ThreadPool and task-based programming model (Task Parallel
Library). Concept of concurrency and its difference from parallelism. Designing
applications that efficiently use multiple threads while avoiding common pitfalls.

Ref.: [6, 8]

Topic 14.

Asynchronous programming

14

Concept of asynchronous programming in C# and its advantages for responsive
applications. Difference between synchronous, multithreaded, and asynchronous
execution. Tasks and the Task-based Asynchronous Pattern (TAP). Returning
values from asynchronous methods. Exception handling in asynchronous code.
Combining multiple asynchronous operations. Practical examples of asynchronous
programming in [/O-bound and network operations.

Ref.: [6, 8]

Topic 15.

Event-driven programming in OOP

15

Concept of event-driven programming as a paradigm where program execution is
determined by events. Role of objects, events, and event handlers in C#. Delegates
as the foundation of event handling. Standard event design pattern. Event
subscription and unsubscription mechanisms. Practical examples of event-driven
programming in graphical user interfaces and real-time systems. Advantages of
event-driven design for building interactive, modular, and responsive applications.

Ref.: [1, 6]

Topic 16.

Graphical user interface development

16

Concept of graphical user interfaces (GUI) in software applications. Overview of
GUI frameworks in .NET such as Windows Forms, WPF, and MAUI. Event-
driven model of GUI programming. Designing windows, controls, and layouts.
Handling user input through events and data binding. Separating logic and
presentation using patterns such as MVC and MV VM. Practical examples of
building simple GUI applications in C#.

Best practices for usability, responsiveness, and maintainability in GUI
development.

Lect

Nf)c ure List of Lecture Topics and Annotations Hours
Ref.: [13]

Total||32
5.2. CONTENT OF LABORATORY WORKS

Semester 2

Topic . .

No Laboratory Session Topic Hours

1 General structure of C# program. 4
Ref.: [1, 7, 11]

2 Inheritance and Polymorphism. 4
Ref.: [1, 7, 11]

3 Delegates. Anonymous methods. Lambda expressions. 4
Ref.: [1, 7, 11]

4 Interfaces, indexers. 4
Ref.: [1,7, 11]

5 Generic templates. Iterators. 4
Ref.: [1, 7, 11]

6 LINQ. 4
Ref.: [2, 11]

7 Entity Framework Core. Basic CRUD operations. 4
Ref.: [2, 3]

8 Entity Framework Core. Advanced usage. 6
Ref.: [2, 3]

Total 34

Semester 3

Topic . .

No Laboratory Session Topic Hours

| Use case analysis. 6
Ref.: [4, 5]

Topic

Laboratory Session Topic

Hours

No.

2 Behavioral modeling. 6
Ref.: [4, 5]

3 Class design. 6
Ref.: [1, 4, 5]

4 Classes and interfaces implementation. 6
Ref.: [1,4,5,6,7, 11]

5 Modules development. 6
Ref.: [4, 5]

6 Dependency management. 6
Ref.: [6]

7 Multithreading and asynchronous programming. 6
Ref.: [6, 8]

g Graphical user interface development. Application deployment.

8

Ref.: [13]

Total 50

5.3. CONTENT OF INDEPENDENT WORK

Independent work of students of all forms of study involves systematic processing of the course

material from relevant sources, preparation for laboratory works and testing. Students have access
to the course page in the Modular Learning Environment, which contains the Working Programme
of the course and the necessary teaching and learning materials.

Semester 2

\NR:ek Type of Independent Work Hours
1 Study of theoretical material from T1, preparation for Laboratory Work No. 9

2 Study of theoretical material from T2, preparation for Laboratory Work No. 9

3 Study of theoretical material from T3, preparation for Laboratory Work No. 9

4 Study of theoretical material from T4, preparation for Laboratory Work No. 9

Preparation for TC No. 1

5 Study of theoretical material from TS5, preparation for Laboratory Work No. 9

6 Study of theoretical material from T6, preparation for Laboratory Work No. 9

7 Study of theoretical material from T7, preparation for Laboratory Work No. 8

Week

Type of Independent Work

Hours

No.
g Study of theoretical material from T8, preparation for Laboratory Work No. 8. g
Preparation for TC No. 2
Total: 70
Notes: TC — Test Control, TI-T8 — Topics of the course.
Semester 3
‘N‘:ek Type of Independent Work Hours
1 Study of theoretical material from T1, preparation for Laboratory Work No. 8
2 Study of theoretical material from T2, preparation for Laboratory Work No. 8
3 Study of theoretical material from T3, preparation for Laboratory Work No. 8
4 Study of theoretical material from T4, preparation for Laboratory Work No. 8
5 Study of theoretical material from TS5, preparation for Laboratory Work No. 8
6 Study of theoretical material from T6, preparation for Laboratory Work No. 8
7 Study of theoretical material from T7, preparation for Laboratory Work No. 8
2 Study of theoretical material from T8, preparation for Laboratory Work No. g
Preparation for TC No. 1
9 Study of theoretical material from T9, preparation for Laboratory Work No. 5 8
10 Study of theoretical material from T10, preparation for Laboratory Work No. 5 8
11 Study of theoretical material from T11, preparation for Laboratory Work No. 6 8
12 Study of theoretical material from T12, preparation for Laboratory Work No. 6 8
13 Study of theoretical material from T13, preparation for Laboratory Work No. 7 8
14 Study of theoretical material from T14, preparation for Laboratory Work No. 7 8
15 Study of theoretical material from T15, preparation for Laboratory Work No. 8 8
16 Study of theoretical material from T16, preparation for Laboratory Work No. 8. 2

Preparation for TC No. 2

Week

No Type of Independent Work Hours

Total: 128

Notes: TC — Test Control, T1-T16 — Topics of the course.

6. TECHNOLOGIES AND TEACHING METHODS

The learning process for the course is based on the use of both traditional and modern teaching
technologies and methods, in particular: lectures (using visualisation methods, problem-based and
interactive learning, motivational techniques, and information and communication technologies);
laboratory works (using training exercises, problem situation analysis, explanation, discussions,
etc.); independent work (study of theoretical material, preparation for laboratory works, ongoing
and final assessment), with the use of information and computer technologies and distance learning
technologies.

7. METHODS OF ASSESSMENT

Ongoing assessment is carried out during practical classes, as well as on the days of control
activities established by the working programme and the academic schedule.

The following methods of ongoing assessment are used:

— test-based assessment of theoretical material;

— evaluation of the results of laboratory work defense.

When determining the final semester grade, the results of both ongoing assessment and final
assessment are taken into account. The final assessment is conducted on all the material of the
course according to examination papers prepared in advance and approved at the meeting of the
department.

A student who has scored less than 60 percent of the maximum score for any type of academic work
is not allowed to undergo the semester assessment until the amount of work stipulated by the
Working Programme is completed. A student who has achieved a positive weighted average score
(60 percent or more of the maximum score) for all types of ongoing assessment but has failed the
examination is considered to have an academic debt.

Elimination of academic debt for the semester assessment is carried out during the examination
session or according to the schedule set by the dean’s office in accordance with the Regulation on
Control and Assessment of Learning Outcomes of Students at Khmelnytskyi National University.

8. COURSE POLICY

The policy of the academic course is generally determined by the system of requirements for the
student as stipulated by the current University regulations on the organization and teaching and
learning support of the educational process. In particular, this includes completing the safety
briefing; attendance at course classes is compulsory. For valid reasons (documentarily confirmed),
theoretical training may, with the lecturer’s approval, take place online. Successful completion of
the course and the formation of professional competences and programme learning outcomes
require preparation for each laboratory work (studying the theoretical material for the topic of the
work), active participation during the class, thorough preparation of the report, defense of the
results, participation in discussions regarding the constructive decisions made during the laboratory
works, etc.

Students must meet the established deadlines for completing all types of academic work in
accordance with the Working Programme of the course. A missed laboratory class must be

completed within the deadline set by the lecturer, but no later than two weeks before the end of the
theoretical classes in the semester.

The student’s mastery of the theoretical material of the course is assessed through testing.

When performing laboratory work, the student must comply with the policy of academic integrity
(cheating, plagiarism, including the use of mobile devices, are prohibited). If a violation of
academic integrity is detected in any type of academic work, the student receives an unsatisfactory
grade and must re-do the task on the relevant topic (type of work) as stipulated by the Working
Programme. Any form of academic dishonesty is unacceptable.

Within the framework of studying the course, students are provided with recognition and crediting
of learning outcomes acquired through non-formal education, available on accessible platforms
(https://prometheus.org.ua/, https://www.coursera.org/), which contribute to the formation of
competences and the deepening of learning outcomes defined in the Working Programme of the
course, or ensure the study of a relevant topic and/or type of work from the course syllabus (for
more details, see the Regulation on the Procedure for Recognition and Crediting of Learning
Outcomes of Students at Khmelnytskyi National University).

9. ASSESSMENT OF STUDENTS’ LEARNING OUTCOMES DURING THE
SEMESTER

Assessment of a student’s academic achievements is carried out in accordance with the Regulation
on the Control and Assessment of Students’ Learning QOutcomes at Khmelnytskyi National
University. During the ongoing assessment of the work performed by the student for each structural
unit and the results obtained, the lecturer awards a certain number of points as set out in the
Working Programme for that type of work.

Each structural unit of academic work may be credited only if the student has scored at least 60
percent (the minimum level for a positive grade) of the maximum possible points assigned to that
structural unit.

When assessing students’ learning outcomes for any type of academic work (structural unit), it is
recommended to use the generalised criteria provided below:

Table — Assessment Criteria for Student Learning Outcomes (for 3-5 Grade)

Grade and Level of
Achievement of Intended
Learning Outcomes and
Competences

General Description of Assessment Criteria

The student has deeply and fully mastered the course content,
confidently navigates it, and skilfully uses the conceptual framework;
The student demonstrates the ability to connect theory with practice,
solve practical problems, and clearly express and justify their
reasoning. An excellent grade implies a logical presentation of the
answer in the language of instruction (oral or written), high-quality
formatting of the work, and proficiency in using specialised tools,
instruments, or application software. The student demonstrates
confidence when answering reformulated questions, is capable of
making detailed and summarised conclusions, and shows practical
skills in solving professional tasks. The answer may contain two or
three minor inaccuracies.

Excellent (High)

Grade and Level of
Achievement of Intended
Learning Outcomes and
Competences

General Description of Assessment Criteria

Good (Average)

The student has shown full understanding of the course content,
possesses the conceptual framework, and navigates the material well;
applies theoretical knowledge consciously to solve practical tasks. The
answer is generally well-articulated, although some minor
inaccuracies or vague formulations of rules or principles may occur.
The student’s answer is based on independent thinking. Two or three
minor mistakes are acceptable.

Satisfactory (Sufficient)

The student demonstrates knowledge of the basic course material
sufficient for continued learning and practical activity in the
profession; is able to complete the practical tasks foreseen by the
programme. The answer is usually based on reproductive thinking.
The student has limited knowledge of the structure of the discipline,
makes inaccuracies and significant errors in the answer, and hesitates
when answering reformulated questions. Nevertheless, they possess
basic skills to complete simple practical tasks that meet the minimum
assessment criteria and, under the lecturer’s guidance, can correct
their mistakes.

Unsatisfactory

(Insufficient)

The student demonstrates fragmented, unstructured knowledge,
cannot distinguish between main and secondary ideas, makes
conceptual errors, misinterprets definitions, presents material in a
chaotic and unconfident manner, and cannot apply knowledge to solve
practical problems. An unsatisfactory grade is typically given to a
student who is unable to continue learning the subject without
additional study.

Table — Assessment Criteria for Student Learning Outcomes (for 6-10 Grade)

Grade and Level of
Achievement of
Intended Learning
Outcomes and

General Description of Assessment Criteria

Competences
Excellent (High) The student has mastered the content of the learning material deeply and
10 comprehensively, easily navigates it, and skillfully uses the conceptual

framework; can link theory to practice, solve practical problems, and confidently
express and justify their opinions. An excellent grade assumes a logical
presentation of the answer in the language of instruction (orally or in writing),
demonstrates high-quality work design and proficiency in special devices, tools,
and application programs. The student does not hesitate when the question is
modified, can make detailed and generalizing conclusions, and demonstrates
practical skills in solving professional tasks. Two or three minor inaccuracies
were made in the response.

Very Good (Above
Average)
9

The student has demonstrated deep and consistent mastery of the learning
material, freely operates with the conceptual framework, and shows a high level
of independent thinking. They confidently navigate the material, can connect
theory with practice, and give logical, consistent, and well-reasoned answers,
although one or two minor mistakes or inaccuracies may be present. The
response is generally well-structured, and the written work is of high quality.
The student shows initiative in solving practical tasks and sufficient flexibility of
thinking under changed conditions of the task. They possess the necessary
practical skills and can work independently without substantial support from the
instructor.

Good (Average)
8

The student has mastered the learning material to the planned extent, generally
possesses the conceptual framework, and is oriented in the studied topics but
makes minor mistakes or shows an unclear understanding of certain provisions.
The response is mostly based on learned examples and models and may contain
some inaccuracies, template formulations, or repetitions. Theoretical knowledge
is applied to solve typical practical tasks but without initiative or flexibility
under changed conditions. The answers are based on independent thinking but
have a lower depth of reasoning compared to higher levels. The written work
may be of moderate quality, although its structure is preserved.

Satisfactory
(Sufficient)
7

The student has mastered the basic curriculum material sufficiently to allow
further learning and performance of typical practical tasks in the field. They
possess basic concepts, although the answers contain inaccuracies or errors that
can be identified and corrected with the help of guiding questions from the
instructor. The response shows the ability for elementary analysis but is mostly
reproductive thinking. The structure of the discipline is partially mastered, and
orientation in the material is unstable; however, the answers are logically
complete. The student demonstrates skills in performing simple tasks of typical
scenarios and usually hesitates when answering modified or complex questions
but tries to justify their opinion.

Satisfactory
(Marginally
Sufficient)
6

The student has demonstrated fragmented mastery of the basic curriculum
material; their answers are mostly superficial, limited to simple reproduction of
individual facts or definitions. They show a low level of orientation in the
structure of the discipline and often hesitate even when answering typical
questions. The answers contain significant mistakes, and the student does not
always understand the meaning of concepts and is unable to independently
correct deficiencies. Performance of practical tasks is possible only in the
simplest cases and under constant instructor supervision. Nevertheless, the
student has minimal but present signs of forming professional skills necessary
for further study with appropriate support.

Unsatisfactory
(Insufficient)

The student has demonstrated disjointed, unsystematic knowledge, is unable to
distinguish between the essential and the secondary, makes mistakes in defining
concepts, distorts their meaning, presents the material chaotically and insecurely,
and cannot use knowledge to solve practical tasks. As a rule, an “unsatisfactory”
grade is given to a student who cannot continue learning without additional work
on the discipline.

Structuring of the Course by Types of Academic Work and Assessment of Student Learning

Outcomes
Semester 2
In-Class Work Assessment Semester Final
Activities Assessment
Laboratory Work Ne: Test control; Pass/fail test

1 | 21 3] 4] 5] 6] 7] 8 T1- | T5-8

Number of points per type of academic work (min—max)

6-10 | 6-10 | 6-10 [6-10 | 6-10 | 6-10 [6-10 | 6-10 | 6-10 | 6-10 | According to the rating

48-80 12-20 60-100"
Semester 3
In-Class Work Assessment Semester Final
Activities Assessment
Laboratory Work No: Test control: Exam
Total

1 | 2131 45] 6] 7 8] 1T14] T58

Number of points per type of academic work (min—max)

35 [3513535353535 [35] 610 | 6-10 24-40 | 60-100"

24-40 12-20 24-40

Notes: If the number of points earned for any type of academic work in the course is below the
established minimum, the student receives a failing grade and must retake the work within the
deadline set by the lecturer (or dean). The institutional grade is determined in accordance with the
table "Correspondence between the Institutional Grading Scale and the ECTS Grading Scale".

Assessment of Laboratory Work Defense Results

A laboratory work completed and formatted in accordance with the requirements established in the
Methodological Guidelines is comprehensively assessed by the lecturer during its defense based on
the following criteria:

— independence and accuracy of execution;

— completeness of the answer and understanding of the principles of building machine learning
models;

— ability to justify the choice of algorithm or method;

— correctness of model implementation in the Python programming environment using appropriate
libraries;

— ability to interpret the results of modelling and evaluate their suitability for solving the given task.
When assessing a laboratory session, the lecturer uses the generalized criteria outlined in the table
“Assessment Criteria for Student Learning Outcomes” (minimum passing score — 3 points,
maximum — 5 points in 3th semester and minimum passing score — 6 points, maximum — 10
points in 2th semester)

If the student demonstrates a knowledge level below 60 percent of the maximum score established
in the Working Programme for each structural unit, the laboratory work is not credited. In such a
case, the student must study the topic more thoroughly, review the methodology, correct major
mistakes, and redefend the work at the time set by the lecturer.

Assessment of Test-Based Control Results

Each test included in the Working Programme consists of 30 test items, each carrying equal weight.
According to the table for structuring types of academic work, the student may receive between 3
and 5 points depending on the number of correct answers.

Distribution of points depending on the number of correct answers to test items:

The test duration is 30 minutes. Students complete the test online in the Modular Learning

Environment.
If a failing grade is received, the test must be retaken before the next scheduled assessment.

Distribution of points depending on correct answers to test questions

INumber of Correct Answers |1-17]18-20|21-23||24-25]26-27][28-30 |
IPercentage of Correct Answers||0-59]60-69]70-79[80-86/87-90(93-100|
Score e Jo 7 8 Jo Jio |

The final semester grade according to the institutional grading scale and the ECTS grading scale is
determined automatically after the lecturer enters the assessment results in points for all types of
academic work into the electronic gradebook. The correspondence between the institutional grading
scale and the ECTS grading scale is provided in the table “Correspondence” below.

Assessment of the Final Semester Control (Exam)

The educational programme provides for a final semester control in the form of an examination, the
purpose of which is to systematically and objectively assess both the theoretical and practical
preparation of the student in the course. The examination is conducted according to examination
papers prepared in advance and approved at the meeting of the department. In accordance with this,
the examination paper contains a combination of both theoretical questions (including in test form)
and practical tasks.

Table — Assessment of Final Semester Examination Results for full-time students (40 points
allocated for final control)

For each individual type of task
Type of Task (Slz\:ltlilsl;::tl(:?y) Potential Positive Score Maximum
(Good)* (Excellent) Score
Score

Theoretical Question Ne 1 3 4 5
Theoretical Question Ne 2 3 4 5
Practical Tasks (6 tasks 18 24 30
worth 3 points each)

Total: 24 40

Note. A passing score for the exam, different from the minimum (24 points) and the maximum
(40 points), falls within the range of 25-39 points and is calculated as the sum of points for all
structural elements (tasks) of the exam.

For each individual type of task in the final semester assessment, the assessment criteria for student
learning outcomes provided above (see Table — Assessment Criteria for Student Learning
Outcomes) are applied.

The final semester grade according to the institutional grading scale and the ECTS grading scale is
determined automatically after the lecturer enters the assessment results in points for all types of
academic work into the electronic gradebook. The correspondence between the institutional grading
scale and the ECTS grading scale is shown below in the Correspondence Table.

The final examination grade is recorded if the total number of points accumulated by the student in
the course as a result of ongoing assessment falls within the range of 60 to 100 points. In this case, a
grade of Excellent/Good/Satisfactory is assigned according to the institutional scale, and a letter
grade is assigned according to the ECTS scale, corresponding to the total number of points earned
by the student as specified in the Correspondence Table.

Table — Correspondence between the Institutional Grading Scale and the ECTS Grading Scale

Institutional Grade(Level of Achievement of the Intended

ECTS Rating Scale Learning Outcomes in the Course)

Grade (Points) Pass/

. Exam / Graded Credit
Fail

Excellent — a high level of achievement of the intended
learning outcomes in the course, indicating the learner’s

A 90-100 full readiness for further study and/or professional activity
in the field.

B 83-89 Good — an average (maximally sufficient) level of

,, | achievement of the intended learning outcomes in the

C 7380 S cogrs.e apd readiness for further study and/or professional
activity in the field.

D 66-72 Satisfactory — the student has demonstrated a minimally
sufficient level of achievement of the learning outcomes

E 60-65 required for further study and/or professional activity in
the field.

Fail — several intended learning outcomes in the course
have not been achieved. The level of acquired learning
FX 40-59 outcomes is insufficient for further study and/or
professional activity in the field.

Fail

v 0-39 Fail — no learning outcomes have been achieved.

03N LN kW~

NN = = e e e = e = = = O
— O 000NN LN kW —O

10. SELF-ASSESSMENT QUESTIONS ON LEARNING OUTCOMES

. Domain analysis.

. Problem domain. Identification of the problem domain.
. Use case diagram.

. Feature-oriented design of the software system.

. Object-oriented analysis. Goals, tasks, and stages.

. Behavioral modeling. Goals, tasks, and stages.

. Activity diagram.

. Sequence diagram.

. State diagram.

. Collaboration diagram.

. Programming paradigms.

. Imperative paradigm. OOP as an imperative paradigm.

. Declarative paradigm.

. Object-oriented paradigm.

. Classes and interfaces.

. Object, instance of a class.

. Responsibilities of a class. Single Responsibility Principle.
. CRC (Class Responsibility Collaboration) cards.

. Cohesion. High cohesion.

. Coupling. Low coupling.

. Categories of programming languages implementing OOP principles.

22. Class diagram.

23. Relationships between classes.

24. Relationships between classes and interfaces. Relationships between
interfaces.

25. Categories of classes.

26. Object diagram.

27. Encapsulation.

28. Inheritance.

29. Polymorphism.

30. Generics. Subtype polymorphism.

31. Abstraction.

32. Class extension.

33. Multiple inheritance.

34. Technical implementation of programming principles.

35. Modularity. Module.

36. Package diagram.

37. Technical implementation of modularity.

38. Decomposition of the software system into modules. Goals and tasks.
39. Package managers. Publishing independent modules.

40. Dependency management. Dependency tree.

41. Dependency injection principle. [oC container.

42. Technical implementation of dependency injection. DI libraries.
43. Value types and reference types. Implementation features in OOP
languages.

44. Garbage collection in OOP languages. Memory cleanup.

45. Event-driven programming.

46. General concept of an event.

47. Delegates and events.

48. Event implementation in OOP languages.

49. Event-driven programming: mechanisms and implementation.
50. Event-driven programming. Events and OOP.

51. Graphical user interface design.

52. The role of OOP in user interface design.

53. Events and their handling in user interface design.

54. Frozen UI handling.

55. Handling changes and states of user interface elements.

56. Multithreading.

57. Semaphores.

58. Mutexes.

59. Thread locking. Deadlocks.

60. Implementation of multithreading in OOP languages.

61. Asynchronous programming.

62. State machine in asynchronous programming.

63. Concept of an asynchronous task.

64. Multithreaded and asynchronous programming.

65. Problems solved by asynchronous programming.

66. Technical implementation of asynchronous programming in OOP
languages.

67. Object-oriented approach to software testing.

68. Cancellation token in asynchronous programming.

69. Threads. Thread-safety programming.

70. Application installer. Implementation of the installer.

11. EDUCATIONAL AND METHODOLOGICAL SUPPORT

The educational process for the course “Object-oriented programming " is supported with all
necessary instructional and methodological materials, which are available in the Modular Learning
Environment MOODLE:

[a—

10.

11.

12.

13.

14.

15.

1. Course “Object-oriented programming (2 Semester) "
https://msn.khmnu.edu.ua/course/view.php?1d=9679
2. Methodological Guidelines for Laboratory Sessions:
https://msn.khmnu.edu.ua/course/view.php?1d=9679
3. Course “Object-oriented programming (3 Semester) ”:
https://msn.khmnu.edu.ua/course/view.php?1d=9344
4. Methodological Guidelines for Laboratory Sessions:
https://msn.khmnu.edu.ua/course/view.php?1d=9344

12. RECOMMENDED LITERATURE

Primary

Joe Mayo. C# Cookbook: Modern Recipes for Professional Developers. O’Reilly Media, 2021.
Jon P. Smith. Entity Framework Core in Action (Second Edition). Manning Publications, 2021.
Brian L. Gorman. Practical Entity Framework Core 6: Database Access for Enterprise
Applications. Apress, 2022.

Mrs. Anuradha A Puntambekar. Object-Oriented Analysis & Design, 2021.

Matthias Noback. Object Design Style Guide: A Set of Practices for Writing Object-Oriented
Code. Manning. Publications, 2020.

Christian Nagel. Professional C# and .NET (2021 Edition). Wiley, 2021.
Supplementary

Andrew Troelsen, Philip Japikse. Pro C# 10 with .NET 6: Foundational Principles and Practices
in Programming. Apress, 2022.

Ziegler S. Micah. Mastering C# Async Programming: Building Scalable and Responsive
Applications, 2021.

Anthony Williams. Hands-On Concurrency with C++: Practical Guide for High-Performance
Multithreading, 2019.

Mark J. Price. C# 10 and .NET 6 — Modern Cross-Platform Development. Packt Publishing,
2021.

Joseph Albahari, Ben Albahari. C# 12 in a Nutshell: The Definitive Reference. O'Reilly Media,
2024.

Paul Deitel, Harvey Deitel, Chuti Prasertsith. C++ 20 for programmers. An Object-natural
Approach, 2022

Jesse Liberty, Rodrigo Juarez, Maddy Montaquila. .NET MAUI for C# Developers: Build
Cross-Platform Mobile and Desktop Applications. Packt Publishing, 2023.

Boiko, V. O. (2024). Method of imperative variables for search automation of textual content in
unstructured documents. Radio Electronics, Computer Science, Control, (2), 117-125

®opkyn 0. Maprtuniok B. TlpaBopceka H. Jlyummpkmit O. Metpuka audepeHmiifoBanoi
LIUKJIOMAaTUYHOI CKJIQAHOCTI aHaji3y MPOTPaMHIO KOJy 3 BHUKOPUCTAaHHSIM CHUCTEM KEepyBaHHS
6azamu jgaHuxX . MDKHApOJHHMI HAYKOBO-TE€XHIYHMH JKypHan «BumipioBaibHa Ta
o0uHnCITIOBAJIbHA TEXHIKA B TEXHOJIOTTYHUX mporiecax». Ne3 -2023- crop. 100-105

16. IlpaBopcbka H.I., Maptuniok B.B. KoncTtpytroBanHs mnporpamHoro 3a0e3meueHHs 3a
JIOTIOMOTOI0 CHHXPOHHOTO TIi/JXOQy: OCHOBHI NpOIECH Ta I1HCTPYMEHTH sl e(eKTUBHOI
peanizanii devops. BicHuk XMenpHUIIBKOTO HalllOHANIBHOTO YHiBepcuTeTy, Tom 1, Ne5, 2023
(325) — ctop.182-192

13. INFORMATION RESOURCES

1. Electronic Library of the University. [Electronic resource]. — Access:
http://library. khmnu.edu.ua/

2. Institutional Repository of Khmelnytskyi National University. [Electronic resource]. — Access:
http://elar khmnu.edu.ua/jspui/?locale=uk

3. Modular Learning Environment. [Electronic resource]. — Access:
https://msn.khmnu.edu.ua/course/view.php?id=9344

