
1

2

Aims and objectives of the discipline

The purpose of the discipline is to provide theoretical and practical training of students,

which should ensure that students acquire basic knowledge in the field of modern design

technologies, software requirements engineering, gain practical skills in the implementation of

software systems, the basics of modeling and analysis of software systems, development analysis,

specification and requirements management

Objectives of the discipline. The main objectives of studying the discipline "Software

Requirements Analysis" is knowledge about the development and analysis of requirements for a

software product. The requirements are classified, the properties of requirements are analyzed,

methodologies, standards, notations for working with requirements are considered. The

components of requirements analysis are analyzed: identification, specification and

documentation, verification. The role of models, tools, and requirements management processes

is considered.

Expected learning outcomes

According to the Standard of Higher Education in the specified specialty and educational

program, the discipline must provide:

competencies: Ability to solve complex specialized problems or practical problems of

software engineering, characterized by complexity and uncertainty of conditions, using theories

and methods of information technology. PC1. Ability to identify, classify and formulate software

requirements. PC4. Ability to formulate and ensure software quality requirements in accordance

with customer requirements, terms of reference, standards. PC5. Ability to comply with

specifications, standards, rules and guidelines in the professional field when implementing life

cycle processes. PC10. Ability to accumulate, process and systematize professional knowledge of

software development and maintenance and recognize the importance of lifelong learning. PC11.

Ability to implement phases and iterations of the life cycle of software systems and information

technologies based on appropriate models and approaches to software development. PC12. Ability

to carry out the process of system integration, apply change management standards and procedures

to maintain the integrity, overall functionality and reliability of the software.

program learning outcomes:. PLO1. Analyze, purposefully search and select the necessary

information and reference resources and knowledge for solving professional problems, taking into

account modern advances in science and technology. PLO3. Know the basic processes, phases and

iterations of the software life cycle. PLO9. To know and be able to use methods and tools for

collecting, formulating and analyzing software requirements. PLO20. Know the approaches to

assessing and ensuring software quality.

Thematic and calendar plan for studying the discipline

No. of

the

week
Lecture topic

Topic of the

laboratory session

Independent work

Contents. Year
.

Literature

1 2 3 4 5 6

3

1 Lecture 1: Stages

of software

development. The
role of requirements

in software project
planning. Subject

and objectives of
the discipline

Analysis of the

problem.
Formulation. Work

with real customers,

identification of

stakeholders and

interviews with them,

analysis of the

material received,

formulation of the

problem, its

relevance and interest

needs

Study of lecture material.

Preparation for LR1.
18 1-5; 7; 11

2 Lecture 2.
Classification of

requirements. User

requirements

 Study of lecture material.

Preparation for the defense

of LR1.

7 4; 7; 11

3 Lecture 3. .
Functional and
nonfunctional
requirements,
features of

implementation in

software projects....

Business Process

Modeling Notation

(BPMN). Using them

in modeling and

analyzing business

processes

Study of lecture material.

Preparation for LR2.
7 2; 5; 12

4 Lecture 4.

Checking the

requirements.
Changing and

modifying the

requirements for a

software project.

 Study of lecture material.

Preparation for the defense

of LR2.

8 4; 7; 11

5 Lecture 5.
Requirements

management.

Using UML to

describe, visualize,

and document various

artifacts of a software-

intensive system

Preparation for TK T 1 -4.

Study of lecture material.
Preparation for LC 3.

11 4; 7; 11

6 Lecture 6: RUP
technology. Unified

modeling language
UML

 Study of lecture material.

Preparation for the defense

of the LR 3.

4 1; 4; 12

4

7 Lecture 7. RUP

technology. The

process of software

development.

Visual representation
of business process
stages through
flowcharting

technique

Study of lecture material.

Preparation for the LR 4.
3 4; 7; 11

8 Lecture 8.
Software design
automation tools

 Study of lecture material.

Preparation for the

defense. ЛР4.

3 1; 4; 12

9 Lecture 9.

Usercentered design.
Represent the data

flow in the system

through a data flow

diagram (DFD) and

identify potential

problems and

opportunities in the

system

Study of lecture material.

Preparation for LR5.
3 2; 4-6; 9

10 Lecture 10.

Implementation of

subsystems.
Diagrams of

structures.
Development of

software system

architecture.

 Study of lecture material.

Preparation for the

defense. ЛР5.

3 4; 6; 13

11 Lecture 11.
Developing

business class and

class diagrams.

Identify the roles and

activities of

stakeholders in the

system through role

activity diagrams

(RADs).

Study of lecture material.

Preparation for LR6.
3 1-3; 7; 11

12 Lecture 12.

Principles of
software

development.

Interaction

diagrams.

 Study of lecture material.

Preparation for the

defense. ЛР6.

3 2; 13

13 Lecture 13.
Interaction
diagrams in

modeling software

systems

Planning and
tracking project

progress through
Gantt charts

Study of lecture material.

Preparation for LR7.
3 4-5; 9-12

5

14 Lecture 14. Stages

of developing

requirements for

software systems

 Study of lecture material.

Preparation for the

defense. ЛР7.

10 4; 7; 13

15 Lecture 15: Terms

of reference for a

software project

Modeling and

analyzing functional

requirements using

IDEF diagrams.

Study of lecture material.

Preparation for LR8.
10 2; 5; 11

16 Lecture 16.
Software

development

through testing

 Study of lecture material.

Preparation for the defense

of LR8.

10 4; 7; 13

17 Lecture 17.
Software
development
through testing
(test-first

Final lesson Preparation for TC T5-8

Testing
11 3-4; 6; 13

 programming).

Implementation of

software systems.

Note: * The sequence of classes is determined by the schedule (may not correspond to the

numbered weeks)

Discipline policy.

 The organization of the educational process in the discipline meets the requirements of the

provisions on organizational and educational and methodological support of the educational

process, the educational program and the curriculum. The student is obliged to attend lectures and

laboratory classes according to the schedule, not to be late for classes, and to complete assignments

in accordance with the schedule. The student is obliged to work out the missed laboratory lesson

independently in full and report to the teacher no later than one week before the next certification.

The student must prepare for laboratory classes on the relevant topic and be active. The knowledge

acquired by a person in the discipline or its individual sections in non-formal education is credited

in accordance with the Regulations on the procedure for re-crediting learning outcomes at KhNU

(http://khnu.km.ua/root/files/01/06/03/006.pdf).

Criteria for assessing learning outcomes.

Each type of work in the discipline is evaluated on a four-point scale. The semester final grade is

determined as a weighted average of all types of academic work completed and passed positively,

taking into account the weighting factor. The weighting factors vary depending on the structure of

the discipline and the importance of its individual types of work. When assessing students'

knowledge, various means of control are used, in particular: an oral survey before admission to the

laboratory work is carried out at the beginning of the work; mastering theoretical material on topics

is checked by test control; the quality of performance, acquisition of theoretical knowledge and

practical skills is checked by defending each laboratory work in accordance with the work program

of the discipline and the work curriculum.
Structuring the discipline by types of work and evaluating the results of students' learning in the

semester by weighting coefficients

http://khnu.km.ua/root/files/01/06/03/006.pdf
http://khnu.km.ua/root/files/01/06/03/006.pdf

6

Audit work

Semester

control, exam

(I)
Final score

 Laboratory work (LW) Test.

1 2 3 4 5 6 7 8 Т
0,4 LR*0.3+T*0.3+I*0.4

 VC = 0.3 VC = 0.3

Symbols: WK - weighting coefficient, LW - laboratory work, T - test, E - exam.
Evaluation of test tasks. The thematic test for each applicant consists of twenty test tasks, each of

which is evaluated by one point. The maximum amount of points that an applicant can score is 20.

The evaluation is based on a four-point scale.

The correspondence of the scores for the test task to the grade assigned to the applicant is shown

in the table below.

Sum of points for the test task 1-11 12-14 15-18 19-20

Assessment. 2 3 4 5

The testing period is 20 minutes. Testing is conducted using the MOODLE modular learning

environment. The applicant registers the correct answers online in the MOODLE modular environment.

After 30 minutes, students complete the test and send their answers to the server. The teacher announces

the results of the test according to the gradebook of the MOODLE modular environment.

If the applicant receives a negative grade, he or she must retake it in the prescribed manner, but

always before the next control.

The final semester grade according to the national and ECTS scales is set in an automated mode

after all grades are entered into the electronic journal. The ratio of the national grading scale and the ECTS

grading scale is shown in the following table.

Correlation of the national grading scale and the ECTS grading scale

ECTS
assessment

Institutional

interval scoring

scale

Domestic assessment, criteria

A 4,75-5,00 5
Excellent - deep and complete mastery of the educational material

and identification of relevant skills

 B 4,25-4,74 4
Good - complete knowledge of the study material with a few minor

mistakes

C 3,75-4,24 4 Good - generally correct answer with two or three significant errors

D 3,25-3,74 3
Satisfactory - incomplete mastery of the program material, but

sufficient for practical work in the profession

E 3,00-3,24 3
Satisfactory - incomplete mastery of the program material that

meets the minimum assessment criteria

FX 2,00-2,99 2
Unsatisfactory - unsystematic knowledge and inability to continue

studying without additional knowledge of the discipline

F 0,00-1,99 2

Unsatisfactory - serious further work and re-study of the discipline

is required

A credit is awarded if the weighted average score received by the applicant in the discipline is in the

range from 3.00 to 5.00 points. In this case, the grade "passed" is assigned according to the national scale,

and the ECTS scale is the letter grade corresponding to the number of points scored by the applicant in

accordance with the Correlation table.

7

Questions for the final control of the discipline "Software modeling and evaluation"

1. Name the components of the object-oriented approach

2. Describe the classes and relationships between them

3. What are the categories of classes

4. What are the signs of a complex system

5. Describe the structure and design of complex systems.

6. Define the concept of system decomposition

7. System structure

8. System structure

9. What are the specifications

10. Give a description of the object model

11. What state and transition diagrams consist of

12. What are the components of an object diagram

13. System architecture of the software

14. Object-oriented analysis, design and programming

15. Give a description of the interaction diagram

16. Classification of systems

17. Project management

18. Identification of system components

19. Abstraction mechanisms

20. System architecture of the software system

21. Usage options

22. UML as a software modeling language

23. UML class diagrams

24. Universal approach to software modeling

25. System decomposition

26. UML diagrams of objects

27. UML action diagrams

28. Components of the object-oriented approach

29. UML diagrams of implementation scenarios

30. Object model

31. Components of the object-oriented approach

32. Object-oriented analysis, design, and programming

33. Object model

34. Classification of systems

35. Object-oriented analysis, design, and programming

36. UML diagramsof use cases

37. Object model of the system.

38. Components of the object approach.

39. The use of object models.

40. Classification of models and their identification.

Methodological support

The educational process in the discipline is provided with the necessary educational and

methodological developments in a modular environment.

Recommended reading

1. Methodology for assessing the sufficiency of information for determining the quality of software:

a monograph. Khmelnytskyi: Khmelnytsky National University, 2017. 310 с.

8

2. Tabunshchyk, T.I., Kaplienko, G.V., Petrova, O.A. (2016) Design and modeling of software of

modern information systems in Zaporizhzhia: Wild Field,

3. Introduction to Software Engineering and Software Life Cycle Management Guide to Software

Engineering Base of Knowledge (SWEBOK): Trans. from English by S. Orlik Retrieved

from:sorlik.blogspot.com/

4. Tabunshchik G.V., Kaplienko, T.I. Petrova. (2016) Design and modeling of software of modern

information systems. Zaporizhzhia.

7. 2. Petryk MR, Petryk OY Software modeling: scientific and methodological manual. Ternopil: Ternopil

National Technical University, 2015. 200 с.

.

Developer: Onyshko O.G.

Agreed:

Head of the Department. OF THE DEPARTMENT OF INDUSTRIAL ENGINEERING

 Bedratiuk L.P.

Guarantor of the ONP Bedratiuk L.P.

